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SUMMARY 

The linear system arising from a Lagrange-Galerkin mixed finite element approximation of the Navier- 
Stokes and continuity equations is symmetric indefinite and has the same block structure as a system 
arising from a mixed finite element discretization of a Stokes problem. This paper considers the iterative 
solution of such a system, comparing the performance of the one-level preconditioned conjugate residual 
method for indefinite matrices with that of a more traditional two-level pressure correction approach. 
Asymptotic estimates for the amount of work involved in each method are given together with the results 
of related numerical experiments. 
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1. INTRODUCTION 

The question of how to solve linear systems efficiently plays a very large part in many problems 
in fluid dynamics, not least in the solution of the Navier-Stokes and continuity equations for 
incompressible viscous fluid flow. The partial differential equations are 

1 
Re 

u , + u ~ v u + v p - - v ~ u = o ,  

where u is velocity, p is pressure and Re is the Reynolds number of the flow.' Applying a standard 
non-linear iterative solver (e.g. the Newton-Raphson method) reduces the problem to one of 
solving a series of linear systems, but the coefficient matrices involved are in general non- 
symmetric. Iterative methods are certainly available for such non-symmetric systems (see e.g. 
Reference 2), but at present theoretical knowledge and analysis of their symmetric counterparts 
are superior. We therefore adopt a different approach and take advantage of the symmetry which 
arises naturally in a Lagrange-Galerkin discretization. 

Applying the Lagrange-Galerkin method to (1) and (2) in the context of a mixed finite element 
approximation removes the non-linearity introduced by the advection term and gives rise to a 
symmetric and indefinite linear system of the form 
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at each time step. Here A is N u  x N u  and symmetric positive definite, B is N, x Nu,  0 is the 
N, x N, zero matrix and the vectors u and p contain the N ,  nodal velocity and N, nodal 
pressure values respectively. This process is described in more detail in Section 2. System (3) 
may be solved in a number of ways, but since it will often in practice be large and sparse, an 
iterative rather than a direct approach is usually more practical. In fact, the coefficient matrix 
in (3) has the same structure as a system arising from the Stokes equations for creeping flow3 
and so various iterative methods which have been proposed for Stokes problems are applicable. 
Here we compare two basic types: Section 3 discusses the traditional pressure correction 
approach (which decouples the pressure and velocity equations to form two related symmetric 
positive definite systems), while Section 4 considers the preconditioned conjugate residual 
method for tackling the fully coupled indefinite system. Asymptotic estimates for the amount of 
work involved in each method are calculated in Section 5 and the performance of each algorithm 
in practice is investigated using numerical experiments in Section 6. 

2. THE LAGRANGE-GALERKIN METHOD 

The Lagrange-Galerkin method is a numerical technique used for solving advection-dominated 
diffusion problems for incompressible viscous flow. It combines a Galerkin finite element 
approach with the method of characteristics, using a relatively straightforward finite difference 
approximation of the Lagrangian material derivative along particle trajectories. The method 
was developed in a series of papers over a number of years; a full description of its various 
formulations and properties can be found in e.g. References 4-7. 

Here we discuss only the method's application to (1) and (2). Representing the convective 
derivative by D/Dt = d/dt + u . V, the weak forms of these equations are 

1 

Re 
(g , .) - ( p .  v .  v )  + - (VU, VU) = 0, (4) 

- (V.u ,q)  = 0, ( 5 )  

where u and q are the appropriate velocity and pressure test functions respectively.' 

discrete approximation to these equations can be obtained by writing 
If d,{x) and $,{x) are basis functions spanning the appropriate finite-dimensional subspace, a 

N P  
p"+' = 1 Pj*j ,  

j =  1 j =  1 

where N u  and N P  are the numbers of velocity and pressure unknowns respectively. A 
Lagrange-Galerkin discretization replaces the convective derivative in (4) by the matrix term 

M u - b  
s t '  (7) 

where M is the finite element velocity mass matrix defined below, 6t is the time step and u 
contains the N u  unknown coefficients Ui. Evaluating the vector b involves tracking back along 
characteristics to evaluate the solution at  the previous time level, i.e. it is calculated using u". 
This is usually the most expensive part of the Lagrange-Galerkin procedure. The remaining 
terms are discretized by the usual Galerkin mixed finite element approximation to give the 
solution at the (n + 1)th time level. 
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The complete coupled system of (4) and ( 5 )  is then represented in matrix terms by 

Av,  = v2 (8) 

or equivalently 

The matrix A has diagonal blocks which are linear combinations of the finite element mass (M) 
and stiffness (K) matrices, i.e. M/dt + (l/Re)K, where 

r 

and is thus symmetric and positive definite. Note that the matrix B is defined by 

and is of full rank under the assumption that an LBB-stable pair of finite elements is used.' In 
addition, the symmetric indefinite system (9) has the same form as a system arising from the 
normal mixed finite element approximation of the Stokes equations for slow incompressible 
viscous flow. 

3. A PRESSURE CORRECTION APPROACH 

One of the most popular methods for solving a Stokes-like system is a pressure correction (PC) 
approach. This involves decoupling the variables to obtain a symmetric positive definite system 
to solve for pressure. Consider the pair of equations 

(13) 

BU = 0 (14) 

AU = b - BTp, 

obtained from (9). Since A is symmetric positive definite, (13) implies 

BU + BA-'BTp = BA-'b. (15) 

It is clear that if a pressure p* can be found such that 

BA-'BTp* = BA-'b, (16) 

then Bu* = 0 and the continuity equation is satisfied, where u* is the related velocity obtained 
from solving (13). Hence solving (9) is equivalent to solving (13) and (16). Using an LBB-stable 
finite element method, the matrix BA- IBT is symmetric positive definite.' 

Iterative solution of symmetric positive definite systems is a much researched topic and one 
obvious method to use is the preconditioned conjugate gradient algorithm, one of a family of 
Krylov subspace methods.*.9 The idea of applying the conjugate gradient method to the 
reformulated system (16) was first analysed in the context of solving Stokes systems by Verfiirth" 
and is applicable to the Lagrange-Galerkin Navier-Stokes system under discussion here. An 
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( 1 )  po = 0 initialise pressure vector 

( 2 )  Auo = b solre /or vt-locity 

(3) ro = Buo calculale initial residual 

(4 )  i = l  initiolise iteration count 

begin loop loop until residual is small 
if 

( 5 )  i = l  
then 

(6) s; = ro set pressure searrh direction 
else 

6 - Ir,-~,r,-d 
(7) ( r , - a r o - a )  

(8) s; = + 63,-1 set pressure searrh direction 
endif 

(9) ALI; = BTs,  solve for velocity search direction 

( 1 0 )  ~1 = set step length 

p ,  = p,-l + U S ,  update pressure 

( 1 2 )  u ,  = u , - ~  - u v ,  updale velocity 

(13) r. = r,-l - UBU. update residual 

(14)  t = I t 1 updale iteration couni 

( 1 1 )  

end loop 

Figure 1. Pressure correction algorithm 

example of an application of this technique to equations (13) and (16) (hence to system (9)) is 
detailed in Figure 1. The coefficient matrix BA-'BT is never actually constructed: all that is 
required are subroutines to multiply B and BT by a vector and a way of efficiently solving the 
linear systems with A as coefficient matrix in steps (2) and (9). 

Verfiirth" used a multigrid method for solving the inner velocity systems, but his idea has 
been developed in many subsequent papers by a variety of authors using different inner solvers. 
Efficient solution of these inner systems is very important for the overall effective performance 
of the algorithm. Bramble and Pasciak'' and Bank et al." use different algorithms based on 
hierarchical methods. Cahouet and Chabardi3 and Atanga and Si l~es te r '~  both use a second 
set of conjugate gradient iterations for the inner system, the former with modified incomplete 
Cholesky factorization as a preconditioner and the latter with diagonal scaling. Asymptotic 
estimates of the work involved in using both these methods (PCMIC and PCDS respectively) 
are given in Section 5. An implementation of the latter algorithm is used in the numerical 
experiments of Section 6. 

4. A CONJUGATE RESIDUAL APPROACH 

As an alternative to the two-level approach above, in this section we consider an iterative method 
which can be applied directly to the coupled indefinite system (8). The preconditioned conjugate 
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. .  
(1) ro = b - Azo calculate initial residunl 

(2) po = . w r o  initialise search r d o ?  

(3) 0 0  = 0 

(4) i = l  initialise iteration coml 

begin loop loop until residual 1s sniall 
rn step length Q, - cr.-,,”-’i.p) 

( A p , - i , M - I  P.-B ( 5 )  

(6) 2, = r , -1  + O,P,-I rn update solution 

(7) r, = r,-I - 0,.4p,-, update residual 

if 10,l 5 t then *ORTHODIR s t t p  

(9) 

(15) 
end loop 

~ = i + l  update iteration counl 

Figure 2. Preconditioned conjugate residual algorithm 

residual (CR) method is another member of the Krylov subspace family and can be used for 
any symmetric indefinite system (see e.g. References 8 and 15). The method works by minimizing 
the L,-norm of the residual at each step (see Appendix for a more detailed analysis of its 
convergence rate). Here the exact algorithm used is a hybrid of the fast ORTHOMIN and robust 
ORTHODIR forms with preconditioner A:* the details are given in Figure 2. 

For the algorithm implemented in the numerical experiments of Section 6 we again use a very 
simple preconditioner, namely diagonal scaling.I6 The precise form of the preconditioning matrix 
is 

where DA is the diagonal of A and DP is the diagonal of the pressure mass matrix P. This is of 
course only one of a number of possible preconditioners. For example, DA could easily be 
replaced by a modified incomplete factorization, equivalent to applying MICCG to the inner 
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system of PC.” In particular, element-based preconditioners (e.g. element-by-element me- 
thods”) may be efficient. Note, however, that applying any preconditioner to the top left 
diagonal block of A will have an effect similar to applying the same preconditioner to the inner 
velocity system of PC. For example, if an optimal solver (such as multigrid) is used with the PC 
approach so that the solution time scales linearly with the problem size, then using the same 
method as a preconditioner in place of the block D, in (17) will render the convergence of CR 
independent of the grid size. That is, the work in CR solution will also grow linearly with the 
problem size.” However, the PC inner system must be solved to high accuracy to preserve 
conjugacy and hence speed of convergence in the outer conjugate gradient iteration. A distinct 
advantage of CR is that the preconditioner used does not have to be an exact solve. For example, 
Silvester and Wathen” note that PC is not convergent when only one multigrid V-cycle is used 
for the inner solve, whereas CR converges at a rate independent of grid size when one multigrid 
V-cycle is used as the upper left block preconditioner. In their computations four V-cycles were 
required to obtain PC convergence. In the numerical experiments of Section 6 we have not 
taken advantage of this: we have used the smallest possible number of inner conjugate gradient 
iterations to give convergence by choosing an inner convergence tolerance just one order of 
magnitude smaller than the outer convergence tolerance. 

5. ASYMPTOTIC WORK ESTIMATES 

In this section we construct some asymptotic estimates of the work involved in implementing 
the above solvers. Consider a regular finite element grid with V vertices in each dimension a 
distance h apart. If this lattice is partitioned into nine-node rectangles in two dimensions, using 
biquadratic velocity and bilinear pressure finite element basis functions (see e.g Reference 1, p. 
34) gives a total of N ,  = 2V2 velocity and N, ‘Y $V’ pressure unknowns. Using the same basis 
functions in three dimensions (with 27 node brick elements) gives N u  = 3V3 and N, N k V 3 .  In 
both cases we denote the total number of unknowns (and hence the dimension of the coefficient 
matrix in (8)) by N = N u  + N,. 

To obtain work estimates for the above iterative methods, we must consider two separate 
factors, namely the amount of work per iteration and the number of iterations required to obtain 
convergence. The former is straightforward to compute, since both the conjugate gradient and 
conjugate residual methods require O(D) flops per iteration, where D is the dimension of the 
coefficient matrix. The latter factor is, however, more complicated to ascertain, depending not 
only on the method itself but also on the eigenvalue distribution of the preconditioned coefficient 
matrix. Below we derive a general bound on the number of iterations required before examining 
the methods used in the above sections separately. 

Let 2 be the exact solution of the preconditioned linear system and represent the kth error 
vector by I1 ek I /  = 1 1  xk - C 11. An estimate of the number of iterations required to achieve 

11 e k  1 1  5 1 1  e0 1 1  VeO E RN, (18) 

for a particular tolerance 6 can be obtained by defining the average reduction factor per iteration 
to be (see Reference 20, p. 62) 

1 / k  
Q = (Z)  

Since the norm in which error reduction is monotonic varies from method to method, it is 
convenient to have such an estimate of iterative convergence which is independent of the specific 
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norm used. Some examples of how the reduction factor is calculated for a particular method 
are given in the Appendix. For the moment we assume that, for large k, r . ~  has the general form 

a l /k ( l  - P h p ) ,  (20) 

where a, B and p are real positive constants and h is the mesh spacing parameter (h 1: l /V).  
From (18) and (19), for iterative convergence we require 

a(1 - B h p ) k  < E,  (21) 

which implies 

In E - In a 
h ( f  - P h p ) '  

k >  

Since 

In E - In a 
In(1 - php) 

In E - In a 
-PbP(l + PhP/2) 

In E - In a 
N -  - 

PhP ' 

a general bound on the number of iterations required to achieve convergence to within tolerance 
c is therefore given by 

k ,  In a - In E 

PhP 

Each iterative method described above must now be considered separately. The results are 
derived in the following subsections and summarized in Table I. Note that ci will be used to 
represent a real positive constant. 

Pressure correction 

Both the inner and outer iterations in Section 3 involve an application of the conjugate 
gradient method. For the outer pressure iteration the eigenvalues of the coefficient matrix 
BA- 'BT in (8) are independent of the mesh parameter h as h -+ 0,13 so the number of iterations 
required for conjugate gradient convergence is also independent of h (see Appendix). For the 
inner velocity iteration the coefficient matrix has diagonal blocks which are linear combinations 
of M and K as defined in Section 3. Calculating the reduction factor, which is affected by the 
choice of preconditioner, gives us the means of constructing overall asymptotic work estimates 
in both two and three dimensions. 

PCDS. The eigenvalues of the diagonally scaled velocity matrix in (13) are dominated by 
those of K and are therefore contained in an interval (c1h2, c2).*' For large k this gives a reduction 
factor of 
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(see Appendix), hence bound (25) gives 

In 2 - In E 

2h ’ 
k >  

The outer iteration involves a constant number of iterations in both 2D and 3D and so requires 
c N ,  flops. From (27) each one of these iterations requires O(Nhi2) inner iterations in two 
dimensions and O(NLI3) inner iterations in three dimensions (since I/ ‘v h -  ’). Thus the flop count 
estimates are c 3 ( N ,  + c,N$’) and c , (N,  + c,N;”’) respectively. Taking N ,  = 8 N ,  in two 
dimensions and N u  N 24N, in three dimensions (and omitting the unknown constants in each 
case) gives overall estimates of 

2D: (1  + 83/2)N; /2 ,  3D: ( 1  + 244/3)N;’3. (28) 

In particular, note that we have dropped the constant c3  in these estimates, which is the number 
of outer iterations required for convergence. 

PCMIC. Applying MIC factorization to the finite element stiffness matrix leads to a pre- 
conditioned matrix whose eigenvalues lie in an interval [ 1, c,h- ’),” giving an estimated iteration 
count of 

Again the outer iteration will involve c N ,  flops and so the total flop count estimates are 
c,(N,  + c , N ~ / ~ )  and clo(N, + c1 ‘ N g 6 )  in 2D and 3D respectively. In terms of N, these become 

2D: ( 1  + 8’I4)N:/,, 3D: (1  + 247/6)N:/6. (30) 

Preconditioned conjugate residuals 

If the preconditioned conjugate residual method is applied to a general symmetric indefinite 
linear system, results analogous to those stated above for the symmetric positive definite case 
are straightforward to obtain. Since they depend heavily on the distribution of the eigenvalues 
of the underlying coefficient matrix, we consider two separate cases: 

(i) making the standard theoretical assumption that the eigenvalues are symmetric about the 

(ii) taking advantage of knowledge of the eigenvalue spectrum of the coefficient matrix from 
origin 

the Lagrange-Galerkin Navier-Stokes (or equivalently Stokes) system. 

CRDS(SYM).  If the eigenvalues of the diagonally scaled indefinite matrix are symmetric 
about the origin and contained in ( - ~ 1 3 ,  -c12hz) u (cl2hZ, cI3), the average reduction factor for 
large k is given by 

fJ = 2’/k(l - 2h2) 
(see Appendix) and so (25) becomes 

In 2 - In E 

2h2 ’ 
k >  
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Since there are O ( N )  flops per iteration, the overall flop count is given by c14N2 in two dimensions 
and c 1 5 N 5 / 3  in three dimensions. To obtain estimates which are easy to compare, we again 
express these figures in terms of the total number of pressure unknowns, N,. Since N = N u  
+ N ,  = 9 N ,  in two dimensions and N = 25N,  in three dimensions, the estimates become 

2 D :  92N: ,  3D: 255/3N:'3. (33) 

CRMIC(SYA4). Again assuming that the eigenvalues are symmetric about the origin, after 
scaling with modified incomplete Cholesky factorization, they will lie in the union of intervals 
( - ~ , ~ h - l ,  - 13 u [ l , c , , h - ' ) ,  giving an iteration bound 

(34) 
In 2 - In E 

2h 
k >  

The overall flop count is thus c1,N3/' in two dimensions and cl8N4I3 in three dimensions or 

2D: 9312N;'2, 3D: 254 /3Nf /3 .  (35) 

CRDS(LG). In the particular case of Section 4 the preconditioned conjugate residual method 
is applied to problem (8) with preconditioner IOI. The eigenvalues of the diagonally precondi- 
tioned matrix are dominated by those of the associated Stokes problem and are therefore not 
symmetric about the origin, but instead lie in the union of intervals ( - c ~ ~ , -  c2 ,h)  u (c , ,h2,  czO).l6 
Finding an expression for the reduction factor is more difficult owing to this lack of symmetry, 
but it can be shown that, for large k,23 

= 21q1 - 2 ~ ) .  (36) 

This leads to a bound on the number of iterations required to achieve convergence of 

(37) 
In 2 - In E 

2h3/2 ' 
k >  

Hence we require c2,N314 iterations in two dimensions and c2,N"* iterations in three dimen- 
sions, giving overall asymptotic work estimates of 

2D: 9,I4N:I4, 3D: 253/2N:/2. (38) 

CRMIC( LG).  When modified incomplete Cholesky preconditioning has been used in the top 
left block of M, the eigenvalues of the Stokes matrix lie in ( - ~ , , h - ' / ~ , - c ~ ~ )  u [l,  ~ 2 5 h - ' ) . ' ~  
The contraction factor can again be used to give an iteration bound of 

This implies that for convergence we require cZ8 N3I8 iterations in two dimensions and c,,N 'I4 

iterations in three dimensions. In terms of N,, overall work estimates are 

2 D :  91 1/8N'1/8 P r  3D: 255/4NjY4. (40) 

A summary of these results is given in Table I. Again all unknown constants have been 
discarded, while those explicitly calculated in the above process have been included to retain as 
much information as possible. The results are shown graphically in Figures 3 and 4. Although 
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3 

1 Pcos 
2 PCMC 

3 CRDS(LG) 

~ 4 CRMC(LG) 

Table I. Summary of asymptotic work estimates 
~ 

Method 

PCDS 
PCMIC 
CRDS(SYM) 
CR MIC(SY M) 
CR DS( LG) 
CRMIC(LG) 

2D 2D 

24 N ;I2 70N 413 

14N5I4 42 N ‘ I 6  
81Nq 214N5/3 
27NPI2 73N4I3 
47N5’4 125NPI2 
21N:’18 56N> 

_ _ - -  
4 8 8 10 12 14 18 18 

T a d  N u d m  ol Prnaun V u i . b k .  

Figure 3. Asymptotic work estimates in 2D 

3 

Figure 4. Asymptotic work estimates in 3D 
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such figures are only approximate, asymptotic work estimates are often used as a guide to the 
prospective relative efficiency of methods. Except for those which correspond to the number of 
outer PC iterations, the unknown constants hidden in these estimates are determined by 
implementation and architectural features which may play an important role in determining 
how a method will actually perform in practice. Modified incomplete Cholesky factorization is 
clearly an advantageous procedure to use, but of course this is only one example of possible 
preconditioning. For the purposes of this comparison we note only that any preconditioner 
applied to the inner pressure correction system will improve performance in a similar way if 
used in the top left diagonal block of the conjugate residual preconditioner 1w. 

A similar comment applies to the memory requirement for each method. Both PC and CR 
require O ( N )  storage in order to represent the problem, while a further 7N for PC and 9N for 
CR are needed for the few auxiliary vectors required in the solution process. They will have 
essentially identical memory requirements for any preconditioner: all common preconditioners 
require also only O ( N )  storage. This is by contrast with direct methods which have typical 
requirements of O(N3I2) locations in two dimensions and O(N513) locations in three dimensions 
in order to store the matrix fill that arises from elimination (see Reference 21, p. 388). 

6. NUMERICAL EXPERIMENTS 

In this section we compare the theoretical results above with a number of numerical experiments. 
These involve solving the Navier-Stokes and continuity equations (1) and (2) on two- and 
three-dimensional finite element grids. The domain chosen is the unit square or unit cube: the 
grids can thus be designed to minimize the effect on the solution procedure of grid irregularities. 
In two dimensions we consider a series of regular finite element grids of n x n eight-node square 
serendipity elements. The boundary conditions are no flow on the top and bottom walls, 

U I  = 04Al  - JJ), u2 = 0 (41) 

at the inlet and full traction at  the outlet. In three dimensions an equivalent partitioning would 
cause an overdetermination of the pressure unknowns in the corners of the domain. To avoid 
this complication, an extra layer of elements has been introduced around the edge of each 
three-dimensional grid, leaving the ‘core’ of the grid as an n x n x n block of 20-node cuboid 
elements. The boundary conditions are analogous to the two-dimensional case: no flow on the 
top, bottom, front and back walls, 

u1 = u2 = 0, u3 = xY(l - x)(1 - JJ)  (42) 

at the inlet and full traction at the outlet. In all cases the Reynolds number is 10.0 and the 
Lagrange-Galerkin time step 6t is 1.0 (although the results presented here are for one time step 
only). The experiments were carried out in FORTRAN on a SUN SPARC2 workstation within 
the framework of Nuclear Electric plc.’s finite-element-based CFD code FEAT.24 This is a 
general finite element code which uses bilinear pressure and biquadratic velocity serendipity 
elements (see Reference 1, p. 34) to model various incompressible fluid flow situations. 

The numerical results are given in Tables II-IV. In Tables I1 and IV, the top five rows contain 
some specifications of the grids, where N ,  is the total number of elements. The times are in 
CPU seconds and are for the solve process only; they do not include the time taken to set up 
the finite element matrices. In each case the preconditioner used is diagonal scaling. This means 
that throughout this section the acronym PC corresponds to the method PCDS in the previous 
section, while CR refers to CRDS(LG). This is because the eigenvalues of the Lagrange-Galerkin 
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Table 11. Numerical results in two dimensions 

n 
N 
NU 
NP 
NE. 

PC Outer iterations 
c0 = Inner iterations (average) 
E ,  = Solve time 
CR Iterations 
E = Solve time 

2 
25 
16 
9 
4 
7 
7 
0.08 
14 
0.05 

4 
105 
80 
25 
16 
14 
14 

37 
0.24 

08 1 

8 16 
433 1761 
352 1472 
81 289 
64 256 
19 21 
27 51 
11.21 107.70 

101 209 
3.44 31.06 

32 
7105 
6016 
1089 
1024 

22 
101 
986.12 
460 
288.61 

64 
28545 
24320 
4225 
4096 

22 
195 

7542.65 
1055 
2704.57 

Table 111. 2D results with fixed number of inner iterations 

n 8 16 32 64 

PC Outer iterations 19 21 29 32 
Eo = 10-3 Inner iterations 20 20 20 20 

Solve time 8.69 43.03 251.37 1 138.39 
DPs of accuracy 2 1 0 0 

Table IV. Numerical results in three dimensions 

n 2 
N 278 
NU 228 
NP 50 
NE. 24 

PC Outer iterations 35 
= 10-3 Inner iterations (average) 27 
= 10-4 Solve time 46-22 

CR Iterations 121 
= 10-3 Solve time 7.45 

4 
1476 
1272 
204 
128 
46 
27 

470.19 
264 
128.00 

8 
9128 
81 12 
1016 
768 

26 
39 

2942.52 
399 

1506.90 

10 
16830 
15060 
1770 
1400 

26 
47 

6749.24 
474 

3400-12 

system we are actually solving in practice are not symmetric about the origin but rather lie in 
precisely the intervals discussed above. 

One important question is how to choose the convergence tolerance for each iterative method. 
Here each algorithm is considered converged when 

for a particular tolerance E.  For CR, E = In the pressure correction case both an outer 
( E ~ )  and an inner (q) value must be set. Here we have chosen E~ = reflecting 
the fact that we expect to have to solve the inner iteration more accurately in order to retain 
convergence in the outer loop (e.g. Reference 25). In comparison with an ‘exact’ solution 
(computed via an uncompetitive direct method), these tolerances ensure that both CR and PC 

and = 



ITERATIVE SOLUTION TECHNIQUES FOR NAVIER-STOKES EQUATIONS 79 

give solutions which, when normalized with respect to the largest velocity and pressure values, 
are correct to three decimal places. If this is no longer true: PC gives 
solutions correct to only two decimal places. Furthermore, accuracy is also lost by choosing a 
fixed number of iterations for the inner velocity system. For the four largest grids the PC method 
was rerun restricting the maximum number of possible inner iterations at each step to 20 and 
the results are listed in Table 111. Note that the number of outer iterations required rises as 
strict inner convergence is lost. In addition, and of more fundamental concern, the overall 
accuracy of the solution is affected. For this specific example the solution is accurate to two 
decimal places in the 8 x 8 case and only one decimal place in the 16 x 16 case. For the larger 
grids no decimal places of accuracy were achieved. Hence, although the asymptotic work 
estimates calculated for PC in Section 5 would be much improved by fixing the number of inner 
iterations, it is clear that the size of this fixed number would still have to grow in some way 
with the size of the problem in order to retain accuracy of the solution. Indeed, for larger 
problems it is possible that the tolerance ratio E ~ / E ~  = 10 would be insufficient to obtain accurate 
solutions. Unlike in the case of nested stationary iterations (such as relaxation), here increasing 
the inner solution accuracy as the outer solution converges is not likely to be successful. 

Although we are far from the asymptotic limit with such sequences of problems, it is possible 
to see some trends emerging. The number of outer iterations in PC does indeed seem to tend 
to a constant as the grid size increases, more noticeably in the two-dimensional case. For all 
problems, however, the one-level indefinite CR solver outperforms the more traditional two-level 
pressure correction approach. This is surprising in view of the analysis in the previous section. 

Figures 5 and 6 show log-log plots of solve time against the number of pressure unknowns, 
N ,  in the two- and three-dimensional cases respectively. The slopes of the lines for PC and CR 
can be seen to be very similar. Estimating the slopes numerically indicates that in our practical 
calculations both methods behave approximately like cN:” in both two and three dimensions. 
The better overall performance of CR stems from the lower value of the constant c :  in two 
dimensions the constant is approximately 0.027 for PC and 0-009 for CR and in three dimensions 

is adjusted to 

Figure 5. Solve time versus N, in 2D 
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Figure 6. Solve time versus N, in 3D 

9 for PC and 0.045 for CR. It is difficult to extrapolate from these resu.,s, since these 
constants are affected by many issues of implementation and machine architecture. In particular, 
the actual number of outer PC iterations (which contributes to the constant for this method), 
though independent of the mesh size for all stable element pairs, will be different for different 
problems.'6 It is, however, clear that there is at least a range of problems for which the often 
neglected CR method can be very competitive in practice. 

7. CONCLUSIONS 

The preconditioned conjugate residual method is an attractive way of solving large Stokes-like 
linear systems. Here we have applied it to the full Navier-Stokes and continuity equations by 
using a Lagrange-Galerkin finite element formulation. Although the asymptotic work estimates 
of Section 5 suggest that the conjugate residual method is theoretically less efficient than a 
traditional two-level pressure correction approach, this is not confirmed by the numerical 
experiments of Section 6. These show that in practice the growth rate of the amount of work 
involved in both methods is similar, with a lower constant in the CR case leading to faster 
solution times. In addition, these experiments show that care must be taken if an attempt is 
made to improve the performance of the pressure correction method by using a constant number 
of steps for the inner iteration, since accuracy of the solution will be lost. This is an important 
and unexpected point: prescribing a fixed number of inner iterations limits the level of accuracy 
which can possibly be achieved. 
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APPENDIX 

Consider applying the conjugate gradient algorithm to a system 

AX = b, (44) 

where the preconditioned coefficient matrix A is symmetric and positive definite. To derive an 
error bound, define the A-norm of a vector v by 

(45) I( V lIA = (V'AV)''Z. 

xk E S = xo + span{ r,, Ar,, A%,, . . . , Ak- 'r,}, 

The conjugate gradient algorithm generates a sequence of iterates 

(46) 

rk = pk(A)ro, (47) 

where r, = b - Ax, is the initial residual. The kth residual can thus be written as 

where F,(A) is a polynomial of degree k with constant term one, i.e. P,(A)En:. Since the 
conjugate gradient method constructs xk specifically to minimize a certain functional over all 
x E S ,  Pk(A) is in fact the polynomial which minimizes rk over all polynomials in n: ; hence 

Expanding the residual in terms of orthonormal eigenvectors of A leads to an error estimate 
independent of r,, namely 

where { A ,  i = 1,. . . , N }  are the eigenvalues of A. Full details of this analysis can be found in 
Reference 2 1. 

It is immediately clear from (49) that the rate of conjugate gradient convergence depends 
crucially on the distribution of the eigenvalues of A. Details of the exact nature of this dependence 
are given in References 21 and 2628.  A simple bound can, however, be derived based on the 
extreme eigenvalues, a and b say. Using this interval, the appropriate polynomial in (49) is a 
shifted Tchebyshev polynomial which leads to the estimate 

where R = b/a. The average reduction factor as defined by (19) is thus (see Reference 29, p. 187). 

J R - 1  
R + l  

Note that in the symmetric positive definite case the ratio R is the condition number of the 
matrix. If this condition number is independent of h, so is the resulting reduction factor. For 
the velocity matrix of PC in Section 5 the eigenvalues lie in the interval (c1h2, c2) for some real 
constants c1 and cZr so R = O(h-') and for large k we can write 

CT = 21/71 - 2h). (52) 
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Analysis of the preconditioned conjugate residual method can be carried out in a similar way. 
In this case, if we assume that A is symmetric and indefinite with a spectrum which is symmetric 
about the origin and contained in 

( - h  - 4 u ( a ,  b) (53) 

for some a, b > 0, we can again use shifted Tchebyshev polynomials to obtain a result analogous 
to (50), namely 

The related reduction factor is thus 

(T = 2”.( 1 - a), (55 )  

and in the specific case where the eigenvalues lie in ( -c, ,-c,h2) u (c,h2, c4), 

(T = 21q1 - 2h2). (56) 

When the spectrum is not symmetric about the origin, the corresponding analysis is considerably 
more intri~ate.’~ 
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